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Abstract: An increasing number of publications indicate that babies born after IVF (in vitro
fertilization) procedures have higher rates of anomalies related to imprinting/epigenetic changes,
which may be attributed to suboptimal culture conditions. Appropriate maintenance of DNA
methylation during the first few days of an in vitro culture requires a supply of methyl donors,
which are lacking in current in vitro culture systems. The absence of protection against oxidative
stress in the culture increases the risks for errors in methylation. A decrease in the methylation
processes is sometimes observed immediately post fertilization, due to delays that occur during
the maternal–zygotic transition period. Care should be exercised in ART (assisted reproductive
technology) procedures in order to avoid the risk of generating errors in methylation during the
in vitro culture period immediately post fertilization, which has an impact on imprinting/epigenetics.
Formulation of IVF culture media needs to be re-assessed in the perspective of current knowledge
regarding embryo physiology.
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A number of publications now indicate that babies born as a result of IVF procedures show
different patterns of DNA methylation compared to babies who were conceived naturally [1–3]. In the
majority of cases this is not due to intrinsic characteristics of the gametes, but instead to sub-optimal
culture condition in vitro.

Commercial IVF media does not contain methyl donors, such as folates [4]. Methionine,
the precursor for the universal methylation cofactor S-Adenosyl Methionine (SAM), is also absent
in some products. This omission apparently resulted from a previous erroneous concept suggesting
that some essential amino acids are toxic to early preimplantation embryos. Human oocytes express
high levels of folate receptor 1 and folate transporter1 (SLC19A1), indicating that these molecules
play an important role during the first 3 to 4 days of development, up to the onset of genomic
activation (also known as the maternal to zygotic transition, MZT). In addition, IVF culture media
spontaneously generates free radicals during incubation and has no protection against oxidative
stress [5]. This may lead to oxidation of methylcytosine (MeC), causing active de-methylation of
some CpG sites [6]. A pathway involving Tet3/TDG (Ten-eleven translocation/Thymine DNA
glycosylase)-mediated MeC oxidation followed by loss of 5hMC (5 hydroxymethylcytosine), as a
result of base excision repair, is present and active during preimplantation development, but a process
that relies on passive DNA replication appears to be more active. The relative importance of the
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2 processes is a controversial issue [7,8]. De-methylation and maintenance of DNA methylation
both co-exist during the preimplantation stages of development and oxidative stress may create an
imbalance between the ratio of the two processes.

In general, there is a direct link between oxidative stress and errors of methylation [6]. Commercial
culture media has been shown to lead to imprinting defects in mouse embryos [9]. In early human
embryos, metabolism up to day 3/4 is dependent upon stored maternal mRNAs and proteins deposited
during oocyte growth within ovarian follicles. Storage of mRNA decreases, in both quality and quantity,
with increasing age, with an effect upon most, if not all, of the metabolic pathways that are important
during early development, including resistance to oxidative stress as well as methylation processes.
This has an impact upon DNA stability and DNA repair processes [10].

One of the (PolyA) mRNAs with high levels of expression in the early human embryo codes is the
enzyme DNMT1 (DNA Methyltransferase), which is responsible for methylation maintenance [11]. It is
expressed at close to 900 times the background level, a rate that is similar to that of tubulin, one of the
most common cellular structural components. The ratio of DNMT1/DNMT3A expression is roughly
7.2. DNMT3b, specifically expressed in totipotent embryonic cells, has a DNMT1/DNMT3B ratio of
6.8. In addition, the overall machinery necessary for methylation (Methionine uptake, SAM synthase,
and SAH hydrolase) is expressed and active in the oocyte and the early embryo before the onset of
MZT [12].

A recent paper by Smith et al., published in the journal Nature [13], suggests that the human
embryo undergoes a rapid drop in methylation shortly after fertilization. DNA methylation patterns
form the molecular basis for imprinting in gametes and early embryos and understanding these
patterns is crucial, since alterations may lead to transgenerational epigenetic disorders, such as
autism [14]. We propose that hypomethylation observed in human IVF embryos may be an artifact
and side effect of poor culture conditions. Under natural conditions, methylation maintenance may
attenuate any post-fertilization drop. In further support of their findings, Smith et al. [13] maintain
that human and mouse DNA methylation patterns are similar, with hypomethylation occurring in
both. In contrast, the decrease in methylation in mouse embryos has been shown to be gradual,
with a characteristic plateau 2–3 days after fertilization [15]. This gradual decrease in mouse embryo
methylation has recently been confirmed, with a relatively high quantity of methylcytosine (MeC)
and only a slight decrease in the activity of the DNMTs observed at these stages [16]. In human
embryos, methylation maintenance is initially high and decreases only after the 4-cell stage [17].
This means that ensuring correct methylation maintenance in the human embryo during the first
3–4 days in vitro requires adequate support/supplementation, before the drop in methylation occurs.
DNA methylation also has a profound impact on genome stability. Recent observations obtained from
in vitro fertilization (IVF) and preimplantation genetic screening (PGS) treatment cycles have provided
confirmation that women carrying the C677T MTHFR SNP (methylenetetrahydrofolate reductase
single nucleotide polymorphism) generate preimplantation embryos with high rates of aneuploidy
and a dramatic decrease in viability. [18]. This SNP and, to a lesser extent, the A1298C MTHFR SNP
are known to impair the supply of folate, especially in individuals who are homozygous for the SNP.
This may also explain the efficiency of “in vivo” treatment with 5MTHF (5-methyltetrahydrofolate)
supplements before and during pregnancy. These SNP carriers suffer long-lasting infertility and
repeated miscarriages [19]. 5MTHF is the folate compound located immediately downstream of
MTHFR and, therefore, can by-pass the problem that is caused by MTHFR SNPs.

These major biochemical pathways must be taken into account, with respect to formulation
of embryo culture media, in order to avoid errors in methylation/epigenetics immediately
post-fertilization and also imprinting errors in particular, as recently described in the literature [20].
Finally, the use of embryonic stem cells as a model for early human embryo metabolism, as described
by Smith et al. [13] is not appropriate. There is no alternative existing biological model for mammalian
preimplantation embryo development in the period prior to activation of the zygotic genome (MZT).
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Until methylation patterns in the human embryo can be measured in vivo, or conditions for
in vitro culture are known to be adequate, data generated from embryos created by IVF must be
interpreted with caution, in particular with reference to the knowledge that IVF babies may have
altered patterns of DNA methylation.
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